Perspective From the U.S. FDA on Biomarkers

Samir N. Khleif, MD
Chief, Cancer Vaccine Section, NCI
Special Assistant to the Commissioner, FDA
Biomarkers in Oncology

- Define patients likely to respond
- Define patients likely to have S/E
- Predict dose

- Early prediction of outcome
 - Response
 - Progression
 - Recurrence
Biomarker Development

• Many candidate biomarkers published—350,000 peer reviewed articles
Biomarker Development

• Many candidate biomarkers published—350,000 peer reviewed articles

Very few ever reach clinical use
Biomarker Development

• Biomarker discovery is fast….. the understanding of clinical meaning develops very slowly
Biomarker Development

• Process for developing biomarkers for various uses is “broken”
 – Lack of understanding of scientific and pathway to qualification for use
 – Lack of understanding of regulatory pathway
 – Lack of viable business model
PSA

• Approved 1986 for monitoring and 1994 for early detection
 – Results varied between labs (different IR of AB, lack of external standard)
 – Practice standards discrepancy: FDA cut of decision making 4 mg/dl
 – Decision making combine PSA with other tests not accepted as standard f/c PSA, PSA velocity etc.
PSA

• Analytical comparison.. immunoassays is challenging

• Clinical utility of tumor marker assays may remain undetermined... biological nuances of disease, clinical decision making, and changes in the concomitant use of other diagnostic and therapeutic tools.

• Without controlled, systematic collection of data on test results and ultimate clinical outcome many questions about test performance will remain unanswered.
Drug Metabolizing Assays

• CYP-450: Strattera; UGT1A1: Irinotecan; CYP2C9 & VKORC1: Warfarin
Pharmacogenetic FDA Label Changes

- UGTA1*28 applicable to white populations
- UGTA1*6 polymorphism more important in Asian populations
- Need studies to determine appropriate starting dose for such patients.
Drug Metabolizing Assays

- CYP-450: Strattera; UGT1A1: Irinotecan; CYP2C9 & VKORC1: Warfarin
 - Clear instruction of how tests was lacking, e.g. dosing decision
 - Drug/allele general association, no specific advice
 - Negative reimbursement decision
Drug Metabolizing Assays

- No clear evidentiary standards on making labeling changes

- Use of pharmacogenomic information may be limited by what is known about clinical impact of its use and by the difficulty incorporating this information into established decision making.

- Health care providers are hesitant to use, and payors are hesitant to pay for, pharmacogenomic information without a sound empiric or evidence base on which to ground correct use.
Challenges for Biomarker Development

- Laboratory method to form a viable assay for wider use
- Analytical validation
- Clinical qualification
- Uptake in clinical labs; acceptance in clinical practice; reimbursement
Regulatory requirement

• Exploratory---minimum

• Demonstration/Characterization---more elaborate
Background

- Federal Food, Drug, and Cosmetic Act of 1938 (The Act)
- Medical Device Amendments of May 28, 1976
- Safe Medical Devices Act of 1990
- FDA Modernization Act (FDAMA) of 1997
- Medical Device User Fee and Modernization Act of 2002
The Current Regulatory System does not properly address

- Qualifying new biomarkers
- Approval pathways for diagnostics
- Linking targeted drug and diagnostic during development
- Clinical trial designs and development programs when targeting subsets of traditional patient groupings
- Evaluating combinations of investigational therapies
Qualifying New Biomarkers

• No real understanding of evidence needed for qualification
• Amount of evidence depends on use
 – Modify dose
 – Select/non-select trial participants
 – Stratify risk
• Conceptual framework strongly needed
• Current thinking overly dominated by “surrogate endpoint” issue
The Current Regulatory System is Not Designed Around Personalized Approaches

• Qualifying new biomarkers
• Approval pathways for diagnostics
 • Linking targeted drug and diagnostic during development
 • Clinical trial designs and development programs when targeting subsets of traditional patient groupings
• Evaluating combinations of investigational therapies
Approval Pathways for Diagnostics

• Currently diagnostics marketed as diagnostic service (“home brew”); analyte specific reagents (ASR); or FDA-approved diagnostic test

• Not clear how the new targeting markers will reach the market
Draft Guidance: “In Vitro Diagnostic Multivariate Index Assays”

• Pertains to assays that report out an “index”, “Score” etc. based on an algorithm developed for the assay

• FDA believes that most IVDMIAs will be classified as class II or III devices
The Current Regulatory System is Not Designed Around Personalized Approaches

- Qualifying new biomarkers
- Approval pathways for diagnostics
- Linking targeted drug and diagnostic during development
- Clinical trial designs and development programs when targeting subsets of traditional patient groupings
- Evaluating combinations of investigational therapies
Linking Investigational Drug and Diagnostic Development

- Prior examples problematic

- Requires close collaboration among drug and dx manufacturer and FDA CDER and CDRH review staffs

- FDA “concept paper”; draft guidance under development
The Current Regulatory System is Not Designed Around Personalized Approaches

- Qualifying new biomarkers
- Approval pathways for diagnostics
- Linking targeted drug and diagnostic during development
- Clinical trial designs and development programs when targeting subsets of traditional patient groupings
- Evaluating combinations of investigational therapies
Clinical Trial Designs to Target Subsets of Traditional Groups

- Ability of biomarker to distinguish subgroups must first be demonstrated (often using retrospective samples with “training” and validation datasets)
Clinical Trial Designs to Target Subsets of Traditional Groups

• Depending on quality of evidence, clinical trial may—

 – Include evaluation of biomarker predictive value (i.e., test biomarker negative subsets) ?

 – Enroll only biomarker + subjects ?

 – Have a sequential design or stepwise outcome measure that is statistically valid ?
The Current Regulatory System is Not Designed Around Personalized Approaches

- Qualifying new biomarkers
- Approval pathways for diagnostics
- Linking targeted drug and diagnostic during development
- Clinical trial designs and development programs when targeting subsets of traditional patient groupings
- Evaluating combinations of investigational therapies
The Critical Path Initiative

Innovation

Stagnation

Critical Path Opportunities List

Critical Path Opportunities Report

U.S. Department of Health and Human Services
Food and Drug Administration
March 2006
Critical Path: Six Areas of Focus

• Improving clinical trial design
• Biomarker development
• Bioinformatics
• Product manufacturing
• Products for Public Health needs
• Product for special populations
Partnerships to Advance Molecular Diagnostics

- Oncology Biomarkers Qualification Initiative (OBQI): FDA-NCI-CMS
- NIH Biomarker Consortium
- Interagency Oncology Task Force: NCI-FDA
- AACR/FDA/NCI Cancer Biomarker Collaborative
- ASCO-FDA Clinical Trial Alternative Design
Oncology Biomarker Qualification Initiative (OBQI)

- Outgrowth of FDA/NCI Interagency Oncology Task Force
- OBQI: agreement between FDA-CMS-NCI to foster biomarker development
- Implement public-private partnerships to share resources and conduct studies using “neutral ground”
How are OBQI projects implemented/funded?

OBQI Federal Alliance: FDA/NCI/CMS

- Cancer Imaging
 - FDG-PET in NHL, FDG-PET in NSCLC
 - Foundation for NIH 501(c)3
 - The Biomarker Consortium
 - solicits for private funds
 - routes funds to NIH via Conditional Gift Fund authority
 - may issue/manage contract for projects
 - provides no scientific input
 - coordinates Exec. Comm and Working Gps
 - provides reports, coordinates communication with partners
 - Projects implemented

- Molecular Assays/Targeted Therapies
 - EGFR (Tarceva)
 - Critical Path Inst. 501(c)3
 - The “MATT” Consortium
 - solicits for private funds
 - no direct link to NCI to supplement appropriations
 - will issue/manage contract for projects
 - will lead scientific activities e.g. work with Cooperative Gps
 - coordinates with FDA/NCI/CMS and Working Gps
 - provides reports, coordinates communication with partners
 - Projects implemented
AACR/FDA/NCI CBC
Cancer Biomarker Collaborative

4 Subcommittees:

– Sample Standardization
– Assay Validation
– Information Sharing
– Bioinformatics
Biospecimen Standardization

- Establish process for specimen Validity
- Establish process for specimen handling to insure reliable evaluation of assays
- Establish standardized reporting systems for specimen handling
- Develop guidelines for IRBs to allow data sharing and data collection beyond response data
Assay Validation

• Develop a pathway for biomarkers assay validations
• Recommendation on Guidance
• Recommendation on policy changes
• Develop coherent integrated educational plan
• Develop unified terminology
• Develop universal physical standards that promote cross referencing
Bioinformatics

• standardization of reporting

• Standardization of platforms for data incorporation and sharing
Information Sharing

- Develop models pre-competitive consortium

- Develop incentives including regulatory, laws, financial

- Divorce drug response data from other clinical data during industry trials to allow development and evaluation of markers through data sharing.
FDA-ASCO Alternative Clinical Trial Design

• Include evaluation of biomarker predictive value (i.e., test biomarker negative subsets)?

• Enroll only biomarker + subjects?

• Have a sequential design or stepwise outcome measure that is statistically valid?